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Abstract 

An attempt has been made to present a probabilistic method to determine fatigue life of an aeronautical 
structure’s component by means of a density function of time a growing crack needs to reach the boundary condition. 
It has been assumed that in a component of a structure given consideration there is a small crack that grows due to 
fatigue load affecting it. After having reached the boundary value the component in question loses its usability. Time 
of the crack growth up to the boundary value is termed a fatigue life of the component. From the aspect of physics, the 
propagation of a crack within the component, if approached in a deterministic way, is described with the Paris’s 
relationship for m = 2. To model the fatigue crack growth a difference equation has been applied, from which the 
Fokker-Planck equation has been derived to be then followed with a density function of the growing crack. The in this 
way found density function of the crack length has been applied to find density function of time of reaching the 
boundary condition. This function has been used in the present paper to determine the randomly approached fatigue 
life of a component of a structure.  

The present paper has been prepared for the case there is coefficient m = 2 in the Paris formula. With the in the 
paper presented scheme, one can find fatigue life of the structure’s component for the case m  2.  
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1. Introduction 
 

A matter under consideration is a method to determine fatigue life of a structural component of 
an aircraft. The following assumptions have been made:  
- the component’s health/maintenance status has been determined with one parameter only, i.e. 

the length of a crack therein. The actual value of the parameter has been denoted with l, 
- any change in the crack length may only occur in the course of the system/device being 

operated, 
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- in the case given consideration the Paris formula takes the following form: 

 22
max

mm
mm

k
z

lCM
dN
dl ,  (1) 

where: 
C, m - material constants,  
Nz - a variable that denotes the number of the component-affecting load cycles due to the system’s 

vibration,  
Mk - coefficient of the finiteness of the component’s dimensions at the crack location,  

max - maximum load defined with equation (2),  
- the load upon the structure’s component, with the system’s vibration taken into account, is 

a destructive factor. Let us assume we’ve got a component-affecting-load spectrum, with account 
taken of vibration. The spectrum allows for the determination of:  
- the total number of load cycles Nc in the course of one flight assumed a standard cycle, 
- maximum loads within thresholds in the assumed spectrum amount to  

(the assumed number of thresholds in the spectrum is L), 

maxmax
2

max
1 ,,, L

- the number of repetitions of specific threshold values of the loading during one flight 
(standard load) ni, where:  

 ,  
L

i
ic nN

1

- maximum values of loads within the assumed thresholds are found in the following way: 
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i

ii
i 2

minmax
max , (2) 

where: 
max
i  - maximum value of the cyclic load within the i-th threshold, 
min
i  - minimum value of the cyclic load within the i-th threshold, 
a
i  - the amplitude of the cyclic load within the i-th threshold. 

- The following frequencies of the occurrence of loads correspond to values thereof within the 
thresholds :  maxmax
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2. An outline of the method to determine probability density function of the component’s crack 

length  
 

Relationship (1) may be expressed against the flying time of the aircraft. Therefore, we assume 
that: 
 tNz , (3) 
where: 
 - the occurrence rate of load cycles upon the component, 

t - flying time of the aircraft.  
In the case under consideration:  

t
1 , 

where t - the average duration of the vibration-attributable fatigue-load cycle.  
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The relationship (1) against the flying time takes the following form: 

22
max

mmdl mm
k lCM

dt
. (4) 

Having applied the hitherto made assumptions, one can proceed to determine the relationship 
tha

k reaches 
the

t describes the dynamics of the fatigue-crack growth, i.e. of the increase in its length. 
Let Ul,t denote the probability that at the time t (for the flying time equal to t) the crac
 length l. With the above-shown notation used, the dynamics of the crack length increase can be 

described with the following difference equation: 

 UPUPU tllLtlltllttl L
UP ,,2,1, .....

21
, (5) 

here: 
bability that the load  defined with equation (2) occurs, where  and 

li - crack increment in time  for the load equal to , where 

w
Pi - pro  max

i Li ,.....,3,2,1
1.....321 LPPPP , 

t max
i Li ,.....,3,2,1 . The increments 

(4). 
E :  

 , (6) 

where u(l,t) - the probability density function of the crack length, which depends on the flying time 

ce equation (6) can be rearranged in the following partial differential equation of 
the

 

are to be found on the grounds of the dependence 
quation (5) in function notation takes the following form

i
iittl tlluPu

1
, ,

L

of the aircraft.  
The differen
 Fokker-Planck type [3]:  

2

2 ),()(
2
1),()(),(

l
tlut

l
tlut

t
tlu . (7) 

A particular solution of equation (7) is the crack-length density function of the following form: 

 )(2

)(2
1),( tAe

tA
tlu , (8) 

where: 
 average crack length for the aircraft’s flying time t,  

 

)( 2tBl

B(t) - an
A(t) - crack-length variance for the aircraft’s flying time t.  

Equation (8) for the total flying time takes the form: 

)(2
)( 2

)(2
1),( N

N

tA
tBl

N
N e

tA
tlu   (9) 

where:  

N - the number of flights by the aircraft, 

or the material constant m = 2 are solutions of the integrals [3]: 

 

N

tt
i

iN
1

, 

ti - duration of the i-th flight.  
Coefficients B(tN) and A(tN) f

t
tC

NN
NeldtttB

0
0 1)()( 2 , (11) 

 

, 
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1 , (12)  
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3. An outline of the method to find the probability density function of time of exceeding 

the permissible (boundary) value by the length of the crack in the component, for m = 2 

on s 
omponent exceeds the permissible value within the time interval (0, t ). The relationship is as 

foll

here ld - the permissible value of the crack length as deter
ponent.  

 

 
Using the density function of the crack length (9) dependant on the flying time of the aircraft, 

e can determine the probability that the actual length of the crack in the aircraft structure’
c N

ows: 

 NdN dltlultQ ,, , (13) 
dl

w mined for some assumed risk of failure 
to the structural com

The probability density function of the flying time up to the moment the crack exceeds the 
permissible value will be determined by the following equation: 

dN
N

ltQ
t

tf , . (14) 

From equation (14) the following is derived:  
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here: w

)1(

))1((

2
2

2
0

22
2

2
0

22
0

2 ))1(
2
1(2

1),( NtC

NtC
d

N

eCl

ell

tC
Nd e

eCl
tlu . (16) 

The way of finding the probability density function of time of exceeding the permissible 
condition (15) is given in [3], pp. 87-90.  
 
4. A

f exceeding the permissible condition for m = 2 

for

 

where the probability density function f(tN,ld) is given by the formula (15).  

n outline of the way of estimating life of the aircraft structure’s component, with the 
probability density function of time o

 
The formula for the reliability of the aircraft structure’s component can be written down in the 
m: 

dNN dtltftR ),(1)( , (17) 
t

0
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The unreliability of the component is then defined by the equation: 

 dt
e tCNdN

N
0
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2 , (18) 

wh
The integral (18) should be re-arranged in the simpler form and the problem reduced to solving 

e indefinite integral:  
 . (19) 

tCt NN 2 2

ere u(ld ,tN) is determined with the formula (16).  
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The following change has been made in the integrand:  
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Expression “1” is to be replaced with expression “2”, and expression “2” is denoted with z:  
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Then, the substitution has been made in the indefinite integral:  
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Therefore, the following is arrived at: 

 dze
z

z1
2

1 .  

After the rearrangements the indefinite integral (21) takes the following form:  

 dze
z

z1
2

1 . (22) 

Then, the second substitution has to be made in the integral (22), which should take the form:  

wz , 

zdz
dw

2
1 , 

w
dw
dz 2 , 

 wdwdz 2 . (23) 

The dependence (23) is inserted in the integral (22). Hence, the following is arrived at:  
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Hence, after inserting (25) in (24) the following integral is effected:  
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where y takes value determined with the dependence (27), since  
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Having inserted the results gained in the equation (17) and remembering about a suitable 
notation of the limits of integration, the following dependence for the reliability is arrived at:  
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 the 
form:  

 

where equation (27) should be substituted for the upper limit of the integral y(t). 
The cumulative distribution function for the standard Gaussian (normal) distribution takes

2
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e’s component is expressed with the following equation: 
With the above-shown dependence taken into account, the formula for the reliability of the 
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Hence, reliability of  the structure’s component will be determined with the following 
dependence:  
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nd (assumed) the level of risk of a failure to the structure’s component, i.e. the level 
of exceeding the permissible value of the length of a crack in this component, we get: 

. (31) 
Hence, 
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2

For the assumed value of Q*, the value of the uppe
on the right side of the equation (32) takes value Q ) is to be found in the standard Gaussian 
distribution tables.  

Hence, the following dependence is arrived at:  
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We assume that 
*

2
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Hence, 
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From (34) we can find time  for which the eq lity relation (34) takes place. Time  will 
be the searched life of the structure’s component, i.e. it will be the aircraft’s flying time for the 
ass k of exceeding the permissible value of the crack length. We assume that:  

*
Nt ,  *

Ntua
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Hence, 
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From (36) we can find x. With some specific value of x gained from the dependence (35), we 
an find :   *

Ntc

xe NtC2 , 
xtC N ln2 , 

 2CN

Formula (37) determ

* ln xt . (37) 

ines fatigue life of the aircraft structure’s component  for the assumed 
risk of exceeding the boundary condition Q*.  
 
5. Final remarks 
 

What has been presented in the paper is an outline of a m
irc

umed in the paper that the sequence of load cycles, 
ereof are concerned remains of no effect upon the crack growth rate. All the 
d at enable specific calculations, if we have values of material constants and 

at

., urek, J., Jasztal, M., Prognozowanie uszkodze  zagra aj cych bezpiecze stwu 
tków powietrznych, NITE, Radom 2008. 
k, H., Wa ny, M., Zarys metody oceny trwa o ci na zu ycie powierzchniowe elementów 

konstrukcji z wykorzystaniem rozk adu czasu przekraczania stanu granicznego (dopuszczalnego), 
ZEM, artyku  w druku, 2008.  

*
Nt

ethod to determine fatigue life of an 
a raft structure’s component. What provokes a fatigue process is a random load in the form of 
load spectrum. It should be emphasised that it is possible to find fatigue life of a component using 
a more complex load spectrum. It has been ass
as far as values th
dependences arrive
d a on the load spectrum.  

The present paper has been prepared for the case there is coefficient m = 2 in the Paris formula. 
With the in the paper presented scheme, one can find fatigue life of the structure’s component for 
the case m  2.  
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